Comprehensive Differentiation Formulas & Rules Dataset

Key Takeaways

  • Access 57 essential differentiation formulas and derivative rules.
  • Explore calculus concepts with categorized functions and their derivatives.
  • Download ready-to-use data for academic study or professional reference.
  • Leverage detailed conditions and notes for each differentiation rule.
Showing 57 of 57
Category Function f(x) Derivative f'(x) Condition Notes
Basic Rulesc (constant)0-Constant rule
Basic Rulesx1-Identity function
Basic Rulesc·f(x)c·f'(x)c is constantConstant multiple rule
Basic Rulesf(x) + g(x)f'(x) + g'(x)-Sum rule
Basic Rulesf(x) - g(x)f'(x) - g'(x)-Difference rule
Basic Rulesf(x)·g(x)f'(x)g(x) + f(x)g'(x)-Product rule
Basic Rulesf(x)/g(x)[f'(x)g(x) - f(x)g'(x)]/[g(x)]²g(x) ≠ 0Quotient rule
Basic Rulesf(g(x))f'(g(x))·g'(x)-Chain rule
Powerx^nn·x^(n-1)-Power rule
Power1/x-1/x²x ≠ 0Same as x^(-1)
Power1/x^n-n/x^(n+1)x ≠ 0Negative power
Power√x1/(2√x)x > 0Square root
Power∜x (x^(1/n))1/(n·x^((n-1)/n))x > 0nth root
Powerx^xx^x(ln(x) + 1)x > 0Logarithmic differentiation
Exponentiale^xe^x-Natural exponential
Exponentiala^xa^x·ln(a)a > 0, a ≠ 1General exponential
Exponentiale^(f(x))e^(f(x))·f'(x)-Chain rule applied
Exponentiala^(f(x))a^(f(x))·ln(a)·f'(x)a > 0General form with chain rule
Logarithmicln(x)1/xx > 0Natural logarithm
Logarithmiclog_a(x)1/(x·ln(a))x > 0, a > 0General logarithm
Logarithmicln(f(x))f'(x)/f(x)f(x) > 0Chain rule applied
Logarithmiclog_a(f(x))f'(x)/(f(x)·ln(a))f(x) > 0General form with chain rule
Logarithmicln|x|1/xx ≠ 0Absolute value logarithm
Trigonometricsin(x)cos(x)-Sine function
Trigonometriccos(x)-sin(x)-Cosine function
Trigonometrictan(x)sec²(x)x ≠ π/2 + nπTangent function
Trigonometriccot(x)-csc²(x)x ≠ nπCotangent function
Trigonometricsec(x)sec(x)tan(x)x ≠ π/2 + nπSecant function
Trigonometriccsc(x)-csc(x)cot(x)x ≠ nπCosecant function
Trigonometricsin(f(x))cos(f(x))·f'(x)-Chain rule applied
Trigonometriccos(f(x))-sin(f(x))·f'(x)-Chain rule applied
Trigonometrictan(f(x))sec²(f(x))·f'(x)-Chain rule applied
Inverse Trigarcsin(x)1/√(1-x²)|x| < 1Arcsine function
Inverse Trigarccos(x)-1/√(1-x²)|x| < 1Arccosine function
Inverse Trigarctan(x)1/(1+x²)-Arctangent function
Inverse Trigarccot(x)-1/(1+x²)-Arccotangent function
Inverse Trigarcsec(x)1/(|x|√(x²-1))|x| > 1Arcsecant function
Inverse Trigarccsc(x)-1/(|x|√(x²-1))|x| > 1Arccosecant function
Inverse Trigarcsin(f(x))f'(x)/√(1-[f(x)]²)|f(x)| < 1Chain rule applied
Inverse Trigarctan(f(x))f'(x)/(1+[f(x)]²)-Chain rule applied
Hyperbolicsinh(x)cosh(x)-Hyperbolic sine
Hyperboliccosh(x)sinh(x)-Hyperbolic cosine
Hyperbolictanh(x)sech²(x)-Hyperbolic tangent
Hyperboliccoth(x)-csch²(x)x ≠ 0Hyperbolic cotangent
Hyperbolicsech(x)-sech(x)tanh(x)-Hyperbolic secant
Hyperboliccsch(x)-csch(x)coth(x)x ≠ 0Hyperbolic cosecant
Inverse Hyperbolicarcsinh(x)1/√(x²+1)-Inverse hyperbolic sine
Inverse Hyperbolicarccosh(x)1/√(x²-1)x > 1Inverse hyperbolic cosine
Inverse Hyperbolicarctanh(x)1/(1-x²)|x| < 1Inverse hyperbolic tangent
Inverse Hyperbolicarccoth(x)1/(1-x²)|x| > 1Inverse hyperbolic cotangent
Inverse Hyperbolicarcsech(x)-1/(x√(1-x²))0 < x < 1Inverse hyperbolic secant
Inverse Hyperbolicarccsch(x)-1/(|x|√(1+x²))x ≠ 0Inverse hyperbolic cosecant
Special|x|x/|x| = sgn(x)x ≠ 0Absolute value
Special[f(x)]^nn[f(x)]^(n-1)·f'(x)-Generalized power rule
Special[f(x)]^g(x)[f(x)]^g(x)·[g'(x)ln(f(x)) + g(x)f'(x)/f(x)]f(x) > 0Logarithmic differentiation
Speciale^(x²)2x·e^(x²)-Gaussian form
Specialln(ln(x))1/(x·ln(x))x > 1Nested logarithm

Use Cases

  • Import the CSV file into your Python scripts or SQL database to build custom calculus learning applications or study tools.
  • Use the Excel file to filter formulas by category, analyze conditions, or create study guides with ease.
  • Print the PDF version for quick offline reference during exams, classroom lectures, or personal study sessions.
  • Reference this dataset to quickly verify derivatives for complex functions in engineering, physics, or data science calculations.