Comprehensive Laplace Transform Table Dataset

Key Takeaways

  • Access 39 essential Laplace Transform pairs for quick reference.
  • Explore common functions and their s-domain equivalents.
  • Download the complete table in multiple convenient formats.
  • Leverage this data for engineering, physics, and mathematics studies.
Showing 39 of 39
Category f(t) (Time Domain) F(s) (s-Domain) Condition Description
Basic11/ss > 0Unit step (constant)
Basict1/s²s > 0Ramp function
Basictⁿn!/s^(n+1)s > 0, n ≥ 0Power function
Basic2/s³s > 0Quadratic
Basic6/s⁴s > 0Cubic
Basic√t√π/(2s^(3/2))s > 0Square root
Exponentiale^(at)1/(s-a)s > aExponential
Exponentialt·e^(at)1/(s-a)²s > aExponential ramp
Exponentialtⁿ·e^(at)n!/(s-a)^(n+1)s > aExponential power
Exponential1 - e^(-at)a/(s(s+a))s > 0Exponential decay from 1
Trigonometricsin(ωt)ω/(s²+ω²)s > 0Sine function
Trigonometriccos(ωt)s/(s²+ω²)s > 0Cosine function
Trigonometrictan(ωt)Complex-Tangent (no simple form)
Trigonometrict·sin(ωt)2ωs/(s²+ω²)²s > 0Ramp sine
Trigonometrict·cos(ωt)(s²-ω²)/(s²+ω²)²s > 0Ramp cosine
Trigonometricsin²(ωt)2ω²/(s(s²+4ω²))s > 0Sine squared
Trigonometriccos²(ωt)(s²+2ω²)/(s(s²+4ω²))s > 0Cosine squared
Dampede^(-at)·sin(ωt)ω/((s+a)²+ω²)s > -aDamped sine
Dampede^(-at)·cos(ωt)(s+a)/((s+a)²+ω²)s > -aDamped cosine
Hyperbolicsinh(at)a/(s²-a²)s > |a|Hyperbolic sine
Hyperboliccosh(at)s/(s²-a²)s > |a|Hyperbolic cosine
Specialδ(t)1all sDirac delta (impulse)
Specialδ(t-a)e^(-as)all sDelayed impulse
Specialu(t)1/ss > 0Unit step function
Specialu(t-a)e^(-as)/ss > 0Delayed step
BesselJ₀(at)1/√(s²+a²)s > 0Bessel function J₀
BesselJ₁(at)(√(s²+a²)-s)/(a√(s²+a²))s > 0Bessel function J₁
Logarithmicln(t)-(ln(s)+γ)/ss > 0Natural log (γ = Euler)
Logarithmic(1-e^(-t))/tln((s+1)/s)s > 0Logarithmic form
Error Functionerf(√t)1/(s√(s+1))s > 0Error function
Error Functionerfc(√t)1/s - 1/(s√(s+1))s > 0Complementary error
Propertyf'(t)s·F(s) - f(0)-First derivative
Propertyf''(t)s²·F(s) - s·f(0) - f'(0)-Second derivative
Property∫f(τ)dτF(s)/s-Integration
Propertyf(t-a)·u(t-a)e^(-as)·F(s)a > 0Time shift
Propertye^(at)·f(t)F(s-a)-Frequency shift
Propertyt·f(t)-dF(s)/ds-Multiplication by t
Propertyf(at)(1/a)·F(s/a)a > 0Time scaling
Propertyf(t)*g(t)F(s)·G(s)-Convolution

Use Cases

  • Import the CSV file into your Python scripts or simulation software to automate calculations involving Laplace Transforms.
  • Use the Excel file to filter and sort specific transform pairs, create custom reference sheets, or integrate into engineering reports.
  • Print the PDF version for quick offline reference during exams, lectures, or practical problem-solving sessions.
  • Integrate this dataset into educational platforms or e-learning tools to provide students with a structured learning resource.