Zestaw Danych: Tabele Prawdy Bramek Logicznych
Ten zestaw danych zawiera kompleksowe tabele prawdy dla 32 popularnych bramek logicznych, w tym ich stany wejścia/wyjścia, wyrażenia Boole'a i opisy. Idealny do nauki i referencji w elektronice cyfrowej.
Bezpłatne pobieranie
Kluczowe wnioski
- Uzyskaj dostęp do tabel prawdy dla 32 podstawowych bramek logicznych.
- Poznaj wyrażenia Boole'a i opisy działania każdej bramki.
- Pobierz gotowe dane do projektowania i studiowania logiki cyfrowej.
- Wykorzystaj typy bramek, wejścia i wyjścia do symulacji obwodów cyfrowych.
Wyświetlanie 32 z 32
| Gate Type | Number of Inputs | Input A | Input B | Output | Boolean Expression | Description |
|---|---|---|---|---|---|---|
| NOT | 1 | 0 | - | 1 | ¬A | Odwraca sygnał wejściowy |
| NOT | 1 | 1 | - | 0 | ¬A | Odwraca sygnał wejściowy |
| AND | 2 | 0 | 0 | 0 | A ∧ B | Wyjście 1 tylko wtedy, gdy oba wejścia są 1 |
| AND | 2 | 0 | 1 | 0 | A ∧ B | Wyjście 1 tylko wtedy, gdy oba wejścia są 1 |
| AND | 2 | 1 | 0 | 0 | A ∧ B | Wyjście 1 tylko wtedy, gdy oba wejścia są 1 |
| AND | 2 | 1 | 1 | 1 | A ∧ B | Wyjście 1 tylko wtedy, gdy oba wejścia są 1 |
| OR | 2 | 0 | 0 | 0 | A ∨ B | Wyjście 1, jeśli którykolwiek z sygnałów wejściowych jest 1 |
| OR | 2 | 0 | 1 | 1 | A ∨ B | Wyjście 1, jeśli którykolwiek z sygnałów wejściowych jest 1 |
| OR | 2 | 1 | 0 | 1 | A ∨ B | Wyjście 1, jeśli którykolwiek z sygnałów wejściowych jest 1 |
| OR | 2 | 1 | 1 | 1 | A ∨ B | Wyjście 1, jeśli którykolwiek z sygnałów wejściowych jest 1 |
| NAND | 2 | 0 | 0 | 1 | ¬(A ∧ B) | NOT AND (NAND) - Wyjście 0 tylko wtedy, gdy oba wejścia są 1 |
| NAND | 2 | 0 | 1 | 1 | ¬(A ∧ B) | NOT AND (NAND) - Wyjście 0 tylko wtedy, gdy oba wejścia są 1 |
| NAND | 2 | 1 | 0 | 1 | ¬(A ∧ B) | NOT AND (NAND) - Wyjście 0 tylko wtedy, gdy oba wejścia są 1 |
| NAND | 2 | 1 | 1 | 0 | ¬(A ∧ B) | NOT AND (NAND) - Wyjście 0 tylko wtedy, gdy oba wejścia są 1 |
| NOR | 2 | 0 | 0 | 1 | ¬(A ∨ B) | NOT OR (NOR) - Wyjście 1 tylko wtedy, gdy oba wejścia są 0 |
| NOR | 2 | 0 | 1 | 0 | ¬(A ∨ B) | NOT OR (NOR) - Wyjście 1 tylko wtedy, gdy oba wejścia są 0 |
| NOR | 2 | 1 | 0 | 0 | ¬(A ∨ B) | NOT OR (NOR) - Wyjście 1 tylko wtedy, gdy oba wejścia są 0 |
| NOR | 2 | 1 | 1 | 0 | ¬(A ∨ B) | NOT OR (NOR) - Wyjście 1 tylko wtedy, gdy oba wejścia są 0 |
| XOR | 2 | 0 | 0 | 0 | A ⊕ B | Wyjście 1, jeśli wejścia są różne |
| XOR | 2 | 0 | 1 | 1 | A ⊕ B | Wyjście 1, jeśli wejścia są różne |
| XOR | 2 | 1 | 0 | 1 | A ⊕ B | Wyjście 1, jeśli wejścia są różne |
| XOR | 2 | 1 | 1 | 0 | A ⊕ B | Wyjście 1, jeśli wejścia są różne |
| XNOR | 2 | 0 | 0 | 1 | ¬(A ⊕ B) | Wyjście 1, jeśli wejścia są takie same |
| XNOR | 2 | 0 | 1 | 0 | ¬(A ⊕ B) | Wyjście 1, jeśli wejścia są takie same |
| XNOR | 2 | 1 | 0 | 0 | ¬(A ⊕ B) | Wyjście 1, jeśli wejścia są takie same |
| XNOR | 2 | 1 | 1 | 1 | ¬(A ⊕ B) | Wyjście 1, jeśli wejścia są takie same |
| BUFFER | 1 | 0 | - | 0 | A | Wyjście równa się wejściu (wzmacniacz sygnału) |
| BUFFER | 1 | 1 | - | 1 | A | Wyjście równa się wejściu (wzmacniacz sygnału) |
| IMPLY | 2 | 0 | 0 | 1 | A → B | Implikacja logiczna (jeśli A, to B) |
| IMPLY | 2 | 0 | 1 | 1 | A → B | Implikacja logiczna (jeśli A, to B) |
| IMPLY | 2 | 1 | 0 | 0 | A → B | Implikacja logiczna (jeśli A, to B) |
| IMPLY | 2 | 1 | 1 | 1 | A → B | Implikacja logiczna (jeśli A, to B) |
Przypadki użycia
- Zaimportuj plik CSV do skryptów Python lub baz danych SQL, aby programowo analizować zachowanie bramek lub budować symulatory obwodów cyfrowych.
- Użyj pliku Excel do filtrowania bramek według typu, tworzenia niestandardowych widoków tabel prawdy lub obliczania logiki bramek w celach edukacyjnych.
- Wydrukuj wersję PDF do celów referencyjnych w klasie, nauki offline lub dołączenia do prezentacji na temat podstaw elektroniki cyfrowej.
- Wykorzystaj ten zestaw danych do szybkiej weryfikacji wyjść bramek logicznych lub jako podstawowe źródło do projektowania złożonych systemów cyfrowych.